Как выбрать электрический теплый пол
     

Как выбрать электрический теплый пол

Системы «теплый пол», предназначенные для основного или вспомогательного отопления жилых помещений в квартирах или частных домах, перестали быть некоей «диковинкой». Они в полной мере доказали свою состоятельность, прочно заняли определенную позицию среди отопительного оборудования, находят все больше сторонников.

Как выбрать электрический теплый пол

Как выбрать электрический теплый пол

Существует две основных категории «теплых полов». Первые из них, водяные, представляют собой контур труб, размещённых в толще пола, по которым циркулирует теплоноситель из системы отопления. Подобная схема достаточно эффективна, но довольно сложна в исполнении, требует масштабных работ, очень точной отладки, приобретения дорогостоящего оборудования, а в ряде случаев – и согласовательных процедур с управляющими компаниями. Поэтому многие хозяева жилья отдают предпочтение электрическому подогреву полов. Хлопот по его монтажу тоже немало, но все же объемы работ и первоначальных затрат - несопоставимы с водяным. Однако, следует помнить, что электрический подогрев может осуществляться по-разному. Поэтому, если есть желание установить дома такой тип отопления, прежде нужно разобраться, как выбрать электрический теплый пол со знанием дела.

В зависимости от типа обогревательного элемента можно подразделить электрические «теплые полы» на два типа – резистивные и инфракрасные. Существует и более предметное разделение, уже по конструктивным особенностям систем – об этом будет сказано несколько ниже.

А для начала нужно разобраться, чем же хороши подобные «теплые полы», и какая мощность будет востребована для электрического подогрева помещений таким способом.

Достоинства электрических систем «теплых полов»

Во-первых, почему именно подогрев пола создает наиболее комфортные условия для проживания в квартире?

Все дело в том, что именно при такой передаче энергии происходит самое оптимальное распределение тепла в объеме помещения. Для примера, сравним, как проходит этот процесс в комнате с привычными радиаторами, и с подогреваемой поверхностью пола:

Распределение тепла с конвекционным отоплением и с системой "теплый пол"

Распределение тепла с конвекционным отоплением и с системой «теплый пол»

Для начала взглянем на левую часть рисунка. Распределение температуры в помещении чрезвычайно неравномерное, причем и по высоте, и по отношению к установленным батареям отопления. Непосредственно у радиаторов – пиковые температуры, достигающие значений в 60 градусов и выше, то есть даже представляющие определенную опасность в план вероятности получения ожога. Далее, температура воздуха снижается за счет конвекционных потоков, но в области потолка всегда остается повышенной, порядка 25 30 градусов, тогда как на уровне пола эти значения минимальны – 18 и даже меньше градусов. Если добавить ко всему этому очень неприятные горизонтальные воздушные потоки, которые сродни сквознякам, то становится понятно, что подобная схема распределения тепла очень далека от оптимальной.

Иное дело, когда подогревается поверхность пола (на рисунке справа). Передача тепловой энергии проходит внизу, а затем нагретый воздух поднимается вверх вертикально, постепенно остывая по мере увеличения высоты. Таким образом, у поверхности пола температуры порядка 25 27 градусов, а на уровне головы стоящего человека – около 18. Именно такой микроклимат считается самым комфортным для людей – как не вспомнить старую мудрость «держи ноги в тепле, а голову в холоде». Горизонтальных конвекционных потоков или нет вообще, или же они сведены до минимума и не причиняют никаких неудобств.

Мало того, с помощью «теплых полов» можно выполнить зонированный обогрев, акцентировав его на определенных участках, в так называемых зонах повышенного комфорта, например, в традиционных местах отдыха или детских игр. И наоборот, в некоторых областях, где нагрев не столь важен, можно при монтаже системы сделать его гораздо менее интенсивным, создав «разрежение» при укладке обогревательных элементов. Таким образом, система отличается повышенной гибкостью.

Итак, с главным достоинством теплых полов ясность есть. Теперь подробнее о том, почему многие выбирают именно электрические системы.

  • Электрические схемы «теплых полов» - универсальны, тогда как установка водяного подогрева пола в многоэтажном доме может быть попросту запрещена.
  • Никаких согласительных процедур, составления отдельных проектов, наличия аппаратуры сопряжения с существующими коммуникациями – не требуется. Расчет производится лишь по реально потреблённой электроэнергии, обычным порядком.
  • Водяной пол – это всегда массивная бетонная стяжка, которая и увеличивает нагрузки на перекрытия, и заметно уменьшает высоту потолков в помещении. При электрических системах подогрева стяжка будет тоньше, а при некоторых разновидностях «теплых полов» стяжка и вовсе не нужна.
  • Монтаж электрического «теплого пола» намного проще, занимает гораздо меньше времени.
  • Электрический обогрев полов при правильном монтаже и отладке в – намного безопаснее водяного. Вероятности аварии с прорывом воды и залитием нижних соседей нет в принципе.
При водяном подогреве пола, увы, никто не застрахован от вот таких "трагичных" казусов

При водяном подогреве пола, увы, никто не застрахован от вот таких «трагичных» казусов

  • Электрический теплый пол легко поддаётся самым точным, вплоть до одного градуса, регулировкам. Он может быть включен в систему «умного дома», может быть запрограммирован на наиболее экономное использование электроэнергии с учетом льготных ночных или воскресных тарифов, с минимальным потреблением энергии в период ежедневного отсутствия хозяев с выходом на оптимальный режим нагрева ко времени их прихода и т.п.
  • Электрические «тёплые полы» критикуют за неэкономичность в плане расхода энергии и дороговизну оплаты коммунальных счетов. С этим можно поспорить – если система рассчитана, смонтирована и отрегулирована правильно, эксплуатируется «с умом», а в самой квартире хозяевами было уделено серьезное внимание проблемам термоизоляции, то платежи за потребленную энергию по самом оптимальном микроклимате дома всегда будут в пределах разумного.

Какая мощность нагрева понадобится

Какой бы тип электрического подогрева поверхности пола ни был избран, перед приобретением комплекта необходимых элементов и расходных материалов производится обязательный расчет создаваемой системы. Алгоритмы расчета по конкретным моделям могут несколько различаться, но все же общий для всех параметр – минимально необходимая мощность нагрева.

Зависит этот показатель от целого ряда критериев:

  • На это влияют климатические особенности конкретного региона, то есть средние показатели зимних отрицательных температур.
  • Важное значение имеет ориентированность здания и конкретного помещения по сторонам света, а также относительно сложившейся в данной местности «розы ветров».
  • Конструкция самого строения – материал, примененный для возведения стен, их толщина, степень термоизолированности, материал кровли, полов и т.п.
  • Полнота и качество проведенных утеплительных работ, в том числе на стенах, цоколе здания, полах. Учитывается, какие установлены окна и двери и насколько велики их термоизоляционные качества.
  • Важным критерием является конкретное предназначение помещения, в котором планируется установка системы подогрева пола.
  • Наконец, учитывается и конечная температура, которую желают видеть хозяева жилья, устанавливая «тёплый пол» в качестве дополнительного или основного типа отопления.

Система расчета – достаточно сложна и громоздка, и это, как правило, удел специалистов теплотехников. Однако, стоят услуги специалистов - достаточно недешево, и поэтому можно попробовать подсчитать параметры «теплого пола» и самостоятельно, воспользовавшись специальными программами, которые доступны в интернете.

Можно для расчета постараться найти специализированное программное обеспечение

Можно для расчета постараться найти специализированное программное обеспечение

У них обычно – достаточно понятный интуитивно интерфейс, и останется лишь по запросам ввести ряд данных о параметрах своего жилища, чтобы программа произвела необходимые расчеты.

Ну а для тех, кто не любит загружать свою голову подробными расчетами, можно привести усредненные значения, которые будут актуальны для средней полосы России, при условии, что в доме или квартире проведены качественные утеплительные работы, установлены двойные стеклопакеты. (К слову, при несоблюдении этих требований нечего и думать об установке электрического теплого пола, так как деньги гарантированно будут улетать в буквальном смысле слова – на ветер).

Тип и предназначение помещенияУдельная мощность электрического подогрева пола (Вт/м ²)Оптимальная погонная мощность греющего кабеля (Вт/м)
номинальнаямаксимальная
Помещения санитарного назначения (ванные, дашевые, санузлы)130 - 14020010 - 18
Дополнительное отопление в кухнях, жилых комнатах, прихожих и т.п.100 - 15017010 - 18
Помещения квартир, расподложенных на первых этажах или над неотапливаемыми помещениями130 - 18020010 - 18
Электрические теплые полы, смонтированные в деревянных полах на лагах60 - 80808 - 10
Электрические теплые полы без стяжки (в том числе ИК-полы, пленочные или стержневые)100 - 120 1508 - 10
Подогрев пола на закрытых и термоизолированных балконах и лоджиях130 - 180 20010 - 18
Использование электического теплого пола в качестве основного источника обогрева жилых помещений, в полах с толстой термоаккумулирующей бетонной стяжкой150 - 20020010 - 18

Следующий важный момент – необходимость термоизоляционного слоя под нагревательными элементами «тёплого пола». Бытует мнение, что такая мера является обязательной только для полов на первых этажах зданий, под которыми нет отапливаемых помещений. В определённой степени — это может показаться справедливым, однако, если разобраться подробнее, то необходимость такой термоизоляции становится очевидной.

Схема утечки тепла через межэтажное перекрытие

Схема утечки тепла через межэтажное перекрытие

На схеме изображены два помещения: под №1 – то, в котором устанавливается система электрического подогрева пола, а под №2 – то, что расположено этажом ниже. Между ними обязательно находится мощное перекрытие №3.

Система электрического подогрева (№4) передает тепловую энергию не только вверх, на лицевое покрытие пола (№5) но и вниз. Если представить, что термоизоляционный слой (№6) не уложен, то огромное количество электроэнергии будет тратиться впустую, на нагрев бетонного перекрытия. Теплоемкость у этой массивной конструкции огромна, и плюс к этому она опирается на капитальные стены, которые также «оттягивают» терло на себя. При этом даже не столь большое значение будет иметь то, какая температура воздуха в нижнем помещении, так как температура самого перекрытия в любом случае будет меньше, и количество тепловых потерь (показаны красными стрелками) будет весьма значительным.

Задача термоизоляционного слоя (№6)– не столько оградить перекрытие от поверхности пола, сколько снизить абсолютно не нужные теплопотери на нагрев бетонного массива вниз. Толщина же может быть различной – вот она зависит и от вида электрического подогрева, и от степени утепленности помещения. Например, для некоторых видов «теплых полов» обязательно потребуется достаточно толстая прослойка из пенополистирола, а для других – достаточно подложки из вспененного полиэтилена с обязательны отражающим фольгированным слоем.

Ниже на диаграмме представлена зависимость количества теплопотерь от толщины утеплительного слоя. По оси ординат в процентах указаны потери от общей тепловой мощности, вырабатываемой системами нагрева. Абсциссы – это толщина утеплительного слоя (в миллиметрах) на основе обычного пенополистирола.

Диаграмма зависимости величины теплопотерь от толщины термоизоляционного слоя

Диаграмма зависимости величины теплопотерь от толщины термоизоляционного слоя

Расчеты проведены для помещения с качественно исполненной термоизоляцией стен, окон, дверей, потолка. Но даже в этом случае отсутствие термоизоляции на полу ведет к потере почти третьей части общего количества тепловой энергии! А вот даже незначительный слой утеплителя сразу же снижает ненужный расход.

Интересная особенность – повышение толщины термоизоляционного слоя позволяет снизить теплопотери практически втрое. Но полностью устранить этот негативный эффект все же не получается. И вот значение толщины пенополистирола или пенополиуретана в 35 - 40 мм становится, по сути, оптимальным – дальнейшее ее наращивание, в принципе, не дает видимого результата (потери стабилизируются на уровне 8 9 %). А это означает, что более толстый слой приведет лишь к перестающему быть оправданным уменьшению высоты помещения.

Основные принципы укладки электрических «теплых полов»

При планировании системы электрического «теплого пола» и составлении предварительных схем и чертежей ее монтажа обязательно учитываются несколько важных правил: В частности, укладка нагревательных элементов никогда не приводится «в сплошную».

  • Они не должны размещаться под стационарными предметами мебели. Нагрев поверхности пола обязательно предполагает постоянный теплообмен с воздухом в помещении. Если этого эффекта нет, то неминуем перегрев кабельной части с вполне вероятным выходом ее из строя. Кроме того, излишний нагрев вреден и для мебели – деревянные или композитные детали будут рассыхаться и трескаться. Да и с экономической точки зрения – зачем тратить энергию на нагрев участков пола, которые никаким образом не принимают участие в общем теплообмене?
Примерная схема укладки электрического "теплого пола"

Примерная схема укладки электрического «теплого пола»

  • Отступы от стен или стационарных элементов мебели должны планироваться примерно в 50 мм. В местах, где проходят отопительные магистрали (стояки) или же установлены иные нагревательные приборы, этот, интервал должен быть увеличен минимум до 100 мм.
  • Обычно считается, что отопление по принципу «теплый пол» будет эффективным в том случае, если площадь покрытия нагревательными контурами составит не менее 70% от общей площади помещения.
  • Целесообразно все предварительные расчеты и «прикидки» перенести на графическую схему, сначала в черновом, а затем и в окончательном варианте – это поможет не ошибиться при расчетах необходимого количества оборудования, станет руководящим документом при проведении монтажных работ. Удобнее всего выполнять подобный чертеж на миллиметровой бумаге, с обязательным соблюдением масштаба.
  • Обязательно сразу определяется оптимальное место для расположения блока управления (термостата) и термодатчика. Обычно сам блок размещают на высоте примерно 500 мм от пола в том месте, где к нему будет обеспечен беспрепятственный доступ для визуального контроля и мануального управления, и куда удобнее всего будет провести и проводку питания, и контакты самих обогревательных элементов.
  • При планировании размещения кабельной части «теплого пола» на поверхности, обязательно учитывается то, что ни при каких обстоятельствах обогревательные провода не могут пересекаться.
  • Остальные параметры укладки уже будут являться специфическими особенностями различных схем электрического подогрева.

Теперь, когда с теорией в общих чертах покончено, перейдём к рассмотрению практических вопросов – выбору конкретного вида электрического «теплого пола».

Электрические «тёплые полы» резистивного принципа действия

Резистивный принцип действия означает нагрев металлических проводов при протекании через них электрического тока за счет подобранного сопротивления металлических проводников. Технологически этот принцип исполнен в виде нагревательных кабелей или специальных матов.

Кабели для системы «теплого пола»

Кабели выпускаются тоже в достаточно широком разнообразии. Их можно разделить на резистивные одножильные, двужильные и полупроводниковые с эффектом саморегуляции нагрева.

  • Одножильные кабели – самые простые по устройству и самые недорогие по своей стоимости. По большому счету – это обыкновенная длинная «спираль в изоляции», подобно той, что используется во многих обогревательных или бытовых приборах.
Схема строения одножильного нагревательного кабеля

Схема строения одножильного нагревательного кабеля

Единственная жила выступает и в качестве проводника, и в качестве нагревательного элемента.

Медная оплетка является лишь экраном, подсоединенным к заземляющему проводнику, для того, чтобы минимизировать возможные электромагнитные излучения от кабеля.

С обеих сторон к такому кабелю через соединительные муфты подсоединены монтажные проводники (их еще называют в обиходе «холодными концами»). Очевидно главное неудобство такого кабеля – оба его конца должны сойтись в одной точке, чтобы быть подключёнными к клеммам блока управления – термостата.

Как правило, подобные кабели реализуются в магазинах комплектами строго определенной длины и, соответственно, мощности нагрева. Эти параметры обязательно должны быть указаны в паспорте изделия.

  • Двужильные кабеля с точки зрения планирования и прокладки системы «теплый пол» - намного удобнее.

В одном кабеле заключены два проводника. Один из них может использоваться для нагрева, а второй – лишь для замыкания цепи. Есть модели, у которых и оба провода в равной мере выполняют обе функции.

А так устроен двужильный нагревательный кабель

А так устроен двужильный нагревательный кабель

Кабель всегда завершается оконечной муфтой, в которой организовано контактное соединение обоих проводников. «Холодный конец» у двужильного кабеля один – это намного упрощает составление схемы выкладки «теплого пола», так как появляется больше свободы в размещении витков – нет нужды тянуть к термостату второй конец. Для примера – сравните два варианта, представленных на рисунке:

В укладке, конечно, проще двужильный кабель

В укладке, конечно, проще двужильный кабель

При абсолютно равной площади обогрева схема укладки двужильного кабеля (справа) намного проще. На схеме цифрами показаны:

1 – обогревающий кабель;

2 – «холодные концы»;

3 – соединительные муфты:

4 – кабель термодатчика;

5 термодатчик;

6 – оконечная муфта.

И в том, и в другом случае использование греющего кабеля, как правило, предусматривает его заливку бетонной стяжкой толщиной от 30 до 50 мм – она, помимо функции выравнивания поверхности пола, будет играть роль мощного аккумулятора тепла. Общая схема будет выглядеть примерно так:

Нагревательные кабели практически всегда заливаются стяжкой

Нагревательные кабели практически всегда заливаются стяжкой

1 – плита потолочного перекрытия;

2 – слой гидроизоляции;

3 – слой термоизолятора. Про материалы и необходимую толщину подробнее было рассказано выше.

4 – Выравнивающая стяжка поверх термоизолятора, толщиной до 30 мм. В ряде случаев, например, при использовании плит экструдированного пенополистирола повышенной плотности, обходятся и без нее.

6 – обогревательный кабель, закрепленный на монтажной ленте (5).

7 – финишная стяжка, толщиной от 30 до 50 мм, которая станет основанием для декоративной отделки пола (8) и весьма емким аккумулятором тепла.

Иногда можно встретить рекомендации по возможной укладке кабельного теплого пола и без стяжки – под настеленным деревянным полом. Однако, это, скорее, является исключением из правил. Кроме того, эффективность такого нагрева все же значительно ниже, чем с использованием стяжки.

Как исключение, кабель может использоваться в деревянном полу, но эффективность нагрева резко снижается

Как исключение, кабель может использоваться в деревянном полу, но эффективность нагрева резко снижается

1 – термоизоляция (пенополистирол, пенополиуретан или минеральная вата).

2 – плотная алюминиевая фольга, играющая роль отражателя тепла.

3 – металлическая сетка, к которой подвязаны петли нагревательного кабеля (4).

5 – термодатчик, размещенный в гофрированной трубке и подключенные к блоку терморегуляции (8)

6 – прорези в лагах для пропуска кабеля

7 – финишное напольное покрытие (как правило, деревянный массив).

  • Теперь надо разобраться с вопросом, сколько же потребуется обогревательного кабеля для комнаты, и с каких шагом его укладывать на полу.

Исходными данными для расчета являются площадь комнаты, на которой будет проводиться выкладка (общая, за вычетом участков, где размещение кабеля запрещено), и необходимая мощность обогрева на квадратный метр площади (указана в таблице, приведенной выше).

Первым шагом определяется требуемая длина кабеля:

L = S × Рs/Рk

- S – площадь, на которой будет производиться раскладка кабеля. Ее несложно вычислить на вычерченной графической схеме.

- Рs удельная мощность электрического нагрева на единицу площади (м²), требуемая для эффективного отопления помещения (см. таблицу).

- Рk удельная мощность конкретной модели нагревательного кабеля – она обязательно указывается в его технической документации.

Теперь несложно определиться с тем, какое межвитковое расстояние должно соблюдаться при укладке кабеля:

Н = S × 100/L

- Н – интервал между соседними проводниками (межвитковое расстояние) в сантиметрах.

- S площадь, то же самое значение что и в первой формуле.

- L определенная ранее длина обогревательного кабеля.

Калькуляторы для расчета длина нагревательного кабеля и шага укладки

Упомянутые формулы введены в предлагаемый читателю калькулятор. Введите значения, и сразу получите требуемую длину обогревательного кабеля:

Расчет длины обогревательного кабеля
Введите запрашиваемые значения и укажите планируемую функциональность "теплого пола".
Установите движком расчитанную площадь укладки обогревательного кабеля в кв. м.
Выберите функциональное предназначение "теплого пола"
Введите паспортное значение удельной тепловой мощности выбранной модели обогревательного кабеля (Вт/м)

Рассчитанная величина послужит ориентиром для подборки комплекта теплого пола с кабелем, длина которого наиболее близка к полученному значению. Теперь несложно найти и шаг укладки:

Еще раз введите площадь укладки кабеля
Введите длину выбранного комплекта обогревательного кабеля

После того как параметры полностью рассчитаны, можно переносить рисунок укладки на масштабированный чертеж – это значительно облегчит впоследствии процесс монтажа «теплого пола».

  • Еще одна разновидность обогревательного кабеля для системы «теплый пол» двужильный саморегулирующийся с полупроводниковой матрицей.

Используется он не так часто, то ли в силу своей дороговизны, то ли из-за не слишком распространенной информации о нем. А между тем – такой кабель очень удобен и экономичен в эксплуатации.

Строение полупроводникового греющего кабеля

Строение полупроводникового греющего кабеля

Оба его проводника выполняют только токопроводящую роль, а нагрев осуществляется за счет полупроводниковой матрицы, расположенной по всей длине кабеля. Особый ее состав вызывает нагрев в любой точке кабеля. Причем, интенсивность нагрева меняется под действием температуры.

На более холодных участках (А) количество токопроводящих частиц (белые точки) максимально, и нагрев здесь ведется наиболее интенсивно. По мере нагрева проводимость матрицы резко снижается (область В), а при достижении оптимальной температуры – практически полностью прекращается (С). Таким образом, кабель сам по себе, без стороннего вмешательства, выравнивает температуру по всей площади комнаты. – остаётся лишь задать ее максимальное значение на терморегуляторе.

Кстати, подобному кабелю не особо страшны и перекрытия нагреваемых поверхностей какими-либо тяжеловесными предметами мебели – после нагрева проводимость матрицы на таком участке попросту снизится до абсолютно безопасных значений.

Саморегулирующиеся кабели пока еще не пользуются широкой популярностью, но, несомненно, у них все еще впереди

Саморегулирующиеся кабели пока еще не пользуются широкой популярностью, но, несомненно, у них все еще впереди

В остальном же процесс расчета и укладки такого кабеля мало отличается от резистивных его «собратьев».

Удобство нагревательных кабелей – полная универсальность создаваемого «теплого пола» - он может быть застелен любым, без исключения, финишным покрытием.

Нагревательные резистивные маты

Чтобы «облегчить жизнь» монтажникам полов с подогревом, были изобретены специальные маты, которые существенно упрощают и процессы расчета, и процедуру укладки.

Очень удобны в работе нагревательные маты с сетчатой основой

Очень удобны в работе нагревательные маты с сетчатой основой

Если говорить более корректно, то это – тот же самый обогревательный двужильный резистивный кабель, но только уже фигурно выложенный с определенным шагом на стекловолоконном сетчатом основании. Нередко такая сетка имеет еще и самоклеящиеся свойства, что делает укладку еще проще.

Ширина таких матов, как правило, около полуметра, а длина может достигать и 20 -24 метров, то есть одним комплектом можно закрыть площадь до 12 м².

Понятно, что рассчитывать шаг укладки кабеля здесь ни к чему. Кроме того, такие маты имеют установленные производителем показатели мощности, приведенные уже к нужной величине – к единице площади. Так, большинство подобных изделий выпускается с удельной мощностью от 100 до 150 Вт/м². Очень редко, но все же встречаются модели, которые обеспечивают нагрев до 200 Вт/м².

Если «набить руку, то укладка таких матов не должна представить особой сложности. Сетку можно свободно резать, не трогая, естественно самого кабеля. А с подрезанной основой не составит труда изменить направление укладки или даже придать мату на полу достаточно сложную, криволинейную форму.

Различные приемы укладки сетчатых матов

Различные приемы укладки сетчатых матов

В итоге можно эффективно покрыть нагревательными элементами любую площадь – от правильных прямоугольников до узких проходов, например, в ванной комнате.

Ими можно застелить помещение любой степени сложности

Ими можно застелить помещение любой степени сложности

Как правило, подобные маты используются при создании системы дополнительного отопления, для повышения комфортности. Они не слишком мощные, но зато и не требуют толстой стяжки – достаточно тонкого выравнивающего слоя. А если «теплый пол» монтируется под покрытие из керамической плитки, то процесс еще больше облегчается – укладку кафеля можно вести непосредственно на маты, лишь немного, до 7 ÷ 8 мм, увеличив толщину наносимого плиточного клея.

Особое преимущество - прямо на них можно укладывать керамическую плитку

Особое преимущество — прямо на них можно укладывать керамическую плитку

Подобные маты, конечно, по стоимости – выше, чем обогревательные кабели, но это в полной мере компенсируется и простотой, и скоростью их укладки.

«Теплые полы» инфракрасного принципа действия

В подобных системах принцип передачи тепловой энергии совершенно другой. Проходящий через специальные элементы электрический ток вызывает, при относительно небольшом их нагреве, жесткое направленное инфракрасное излучение, невидимое глазу, но хорошо передающее энергию на значительные расстояния (прямая аналогия с солнечным светом, только, конечно, в несопоставимо меньших масштабах).

Инфракрасные излучения с длиной волны от 4 до 20 нанометров распространяются прямолинейно, вызывая нагрев находящихся на их пути поверхностей. Такое распространение тепла является наиболее комфортным для человека.

Инфракрасные системы подогрева полов могут быть двух видов – это пленочные обогреватели или стержневые маты.

Плёночные инфракрасные обогреватели

Между двумя плотными полиэстеровыми пленками конструктивно размещены две параллельные медные токопроводящие шины, а между ними – излучающие при прохождении электричества тепловую энергию черные полосы из особой карбоновой пасты.

Рулон пленочного инфракрасного нагревателя

Рулон пленочного инфракрасного нагревателя

Общая толщина такой пленочной сборки очень невелика – как правило, не более 0.4 мм. Тем не менее, она становится очень эффективным обогревателем помещения.

При расчетах такого «теплого пола» исходят из того, что отступ от стен или стационарных предметов мебели должен быть не менее 200 мм. Далее, после составления примерной схемы необходимо высчитать процентное соотношение площади, на которой будут размещаться полотна обогревателя, к общей площади помещения. Это необходимо для того, чтобы определиться с требуемой мощностью покрытия.

Так, если это соотношение составляет 60% и менее, то потребуются пленочные элементы с удельной мощностью порядка 220 Вт/м². Если же площадь покрытия превышает 60%, то, соответственно, уменьшается и мощность нагревательного элемента. Ступени мощности, с которыми выпускаются подобные пленочные излучатели –  от 130 до 230 Вт/м², с шагом через 20Вт, то есть существует возможность подбора наиболее оптимального уровня нагрева.

При расчётах и составлении схемы укладки необходимо учитывать форму выпуска пленочных обогревателей. Они бывают в ширину 500, 800 или 1000 мм, а длина в рулоне может достигать 50 метров. Однако, есть предельные значения длины полос, превышать которые не рекомендуется из-за возможного ухудшения теплотехнических характеристик. Предельные значения указаны в таблице:

Стандартная ширина рулона инфракрасной пленки (см)Допустимая максимальная длина одного фрагмента (м)
508,5
806,75
1004,25

Обычно через каждые 250 мм нанесена линия, по которой можно проводить раскрой пленки – это никак не повлияет на ее работоспособность при правильно монтаже системы. Резать ее в иных местах категорически запрещено.

Пленочные теплые полы, как правило, применяются только «сухим» методом, без использования стяжки. В основном они служат для дополнительного подогрева паркетных, ламинированных или линолеумных полов.

При пленочных технологиях обогрева стяжка вообще не нужна

При пленочных технологиях обогрева стяжка вообще не нужна

Использовать их для других целей, например, для установки под керамическую плитку, тоже, в принципе, можно, но технология становится очень сложной, с применением особым методов и материалов гидроизоляции и укладки кафеля, и поэтому проще и намного дешевле будет в таком случае уложить обычный нагревательный кабель или мат.

Видео: одна из разновидностей пленочного «теплого пола»

Стержневые инфракрасные нагреватели

Не так давно появившиеся стержневые нагревательные инфракрасные маты сразу же завоевали популярность. Они представляют собой два параллельных проводника в надежной полимерной изоляции, между которыми размещены излучатели-стержни.

Одно из самых инновационных решений - стержневые инфракрасные маты

Одно из самых инновационных решений — стержневые инфракрасные маты

Стержни достаточно гибкие и прочные, представляют собой сложную конструкцию из карбона, серебра и графита. При подаче напряжения каждый такой стержень становится источником инфракрасного излучения в волновом диапазоне от 8 до 14 нанометров.

Стандартная ширина таких матов – 830 мм, излучающие стержни расположены с интервалом 90 или 100 мм. Длина мата может составлять до 20 м.

При укладке один проводник можно обрезать по центру между стержнями

При укладке один проводник можно обрезать по центру между стержнями

При укладке таких обогревателей на полу разрешается проводить резы проводника по центру между стержнями, с последующим замыканием цепи с помощью дополнительных монтажных проводов. Пример подобного соединения приведён на рисунке ниже.

Примерная схема электрической коммутации стержневых матов

Примерная схема электрической коммутации стержневых матов

Обычно такие нагревательные инфракрасные маты, в зависимости от частоты расположения стержней, имеют два варианта удельной мощности – 130 или 160 Вт/м² (показатель может быть представлен и как мощность на погонный метр – тогда это будет 116 или 138 Вт/м). минимально допустимая длина мата при его монтаже на полу – 500 мм.

Важная особенность и огромное удобство в эксплуатации подобных матов – их способность к саморегуляции. При достижении выбранного уровня нагрева полупроводниковые стержни «запираются» и перестают излучать тепловую энергию. А это значит, что даже передвинутая мебель или переставленный холодильник не принесут такой системе теплого пола никакого вреда, и электроэнергия не будет при этом транжириться попусту.

Такие системы нагрева тоже достаточно универсальны – могут использоваться практически с любыми типами покрытий пола. Обычно подобные маты заключают в тонкую стяжку толщиной в 30 мм – без этого условия саморегуляция стержней происходить не будет.

Видео: как устанавливается стержневой «теплый пол»

Что еще приобретают для системы «теплого пола»

При выборе системы электрического подогрева пола обязательно сразу подбирают и элементы контроля и управления – термодатчик и терморегулятор.

Обязательные элементы для "теплого пола" - термодатчик с кабелем и терморегулятор с механизмами управления

Обязательные элементы для «теплого пола» — термодатчик с кабелем и терморегулятор с механизмами управления

Очень часто термодатчик вместе со штатным кабелем входит в состав комплекта, например, при приобретении кабельной системы или сетчатых матов. Тем не менее, не исключен вариант, когда это устройство придется покупать отдельно. При этом следует обратить внимание на достаточность длины его кабеля – ее должно хватить от места монтажа терморегулятора до выбранного на схеме участка установки датчика. Наращивать длину – не рекомендуется, обрезать излишки – вполне допустимо.

А вот с терморегулятором внимания нужно побольше. Этот прибор может быть достаточно простым, с электромеханическим регулированием температуры. Однако более совершенными являются приборы управления с электронной схемой управления и панелью индикации, которые снимают значение температуру и на уровне пола, и в самом помещении. Понятно, что здесь возможности тонкого регулирования и программирования режимов – намного шире. Правда, и стоимость таких приборов тоже будет выше.

Современные терморегуляторы выполняют множество функций и имеют возможность программирования и дистанционного управления по разным каналам связи

Современные терморегуляторы выполняют множество функций и имеют возможность программирования и дистанционного управления по разным каналам связи

Важно обратить внимание и на допустимый ток потребления подобным терморегулятором. Так, если система «теплого пола» суммарно  потребляет менее 2,3 кВт, то будет достаточно прибора, рассчитанного на 10 ампер. Если же система подогрева потребляет больше, то и терморегулятор нужен более мощный – на 16 ампер.

Кстати, практически все производители «теплых полов» всегда рекомендуют к своей продукции те или иные типы терморегуляторов. Самым разумным действием будет прислушаться к подобным советам.

И, наконец, следует предусмотреть систему электробезопасности. Речь идет об отдельной проложенной линии питания 220 В для теплого пола – для этих целей нельзя использовать обычные розетки! Эта линия должна быть оснащена проводами сечением не менее 1,5 мм² (при мощности до 2,3 кВт) или даже 2,5 мм², если система – более мощная. В распределительном щитке должен быть установлен соответствующий автомат. А чтобы полностью исключить вероятность поражения электротоком, рекомендуется установить на систему подогрева пола устройство защитного отключения (УЗО).

И в завершение статьи – подробный видеоролик об особенностях существующих электрических систем подогрева пола:

Видео: какой электрический «тёплый пол» для чего предназначен

Мы ответили на Ваш вопрос?

2

Cсылка на сообщество vk.com

Cсылка на сообщество ok.ru